

# Framework for the design of regenerative product systems

Presented by Martin Wolf BizNGO Annual Meeting 11 December 2019

# Outline

- Introduction
- Definitions
- Product systems
- Ecosystems
- The Regeneration Factor
- A framework for regenerative systems
- Conclusions & Discussion



# Definitions

- Impact an effect on the environment
- Sustainability meeting the needs of the present without compromising the ability of future generations to meet their own needs – Brundtland Commission
- Restoration return of a damaged system to a prior functional state –
- Regeneration autonomous return of a damaged system to a prior functional state
- Evolution gradual, progressive change usually making systems more diverse & resilient

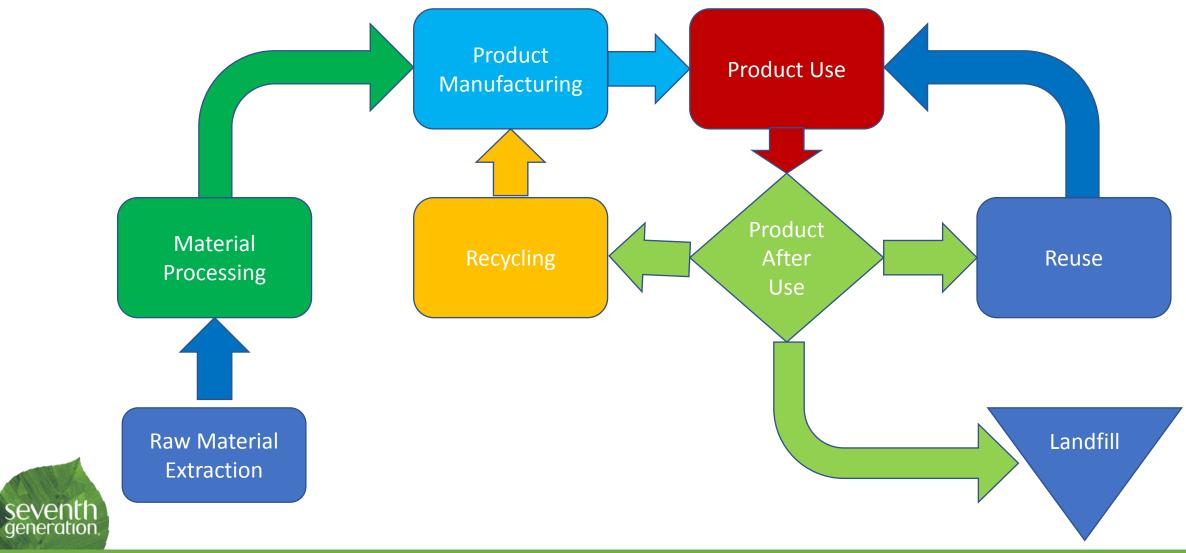


# Definitions

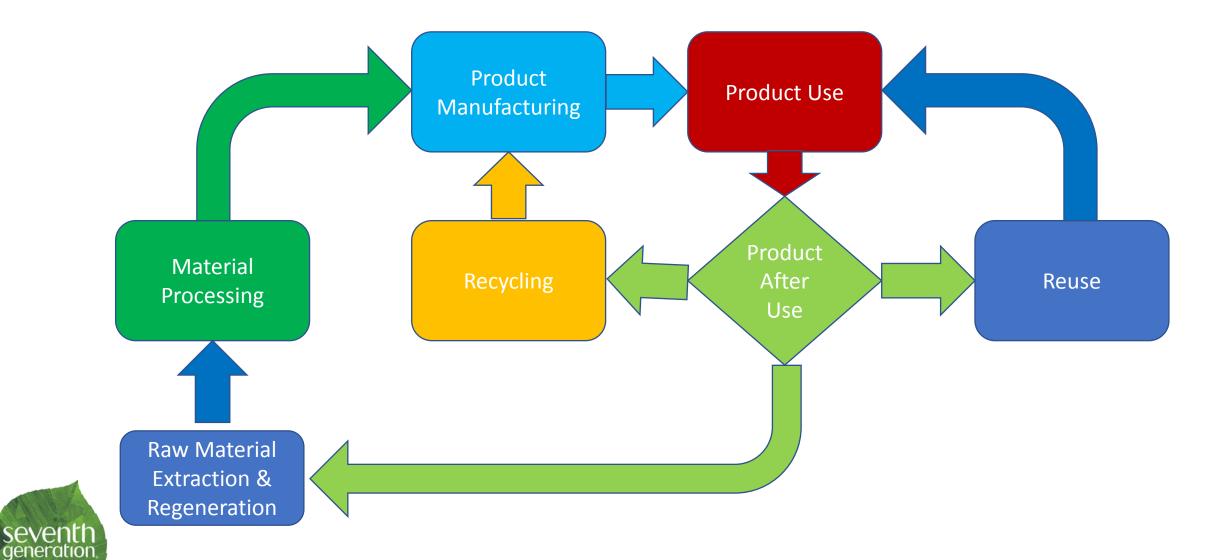
- System a set of objects and processes that together perform a function not obtainable by the objects and processes alone
  - Closed system a system whose elements, including all mass and energy flows, lie within a boundary
  - Open system a system whose elements lie within a boundary that allows mass and energy flows across the boundary
- Product a substance or article that is grown, processed, or manufactured to serve a purpose
- Product system a set of objects and processes that together function to produce a product or service



#### Can A Product Be Regenerative?

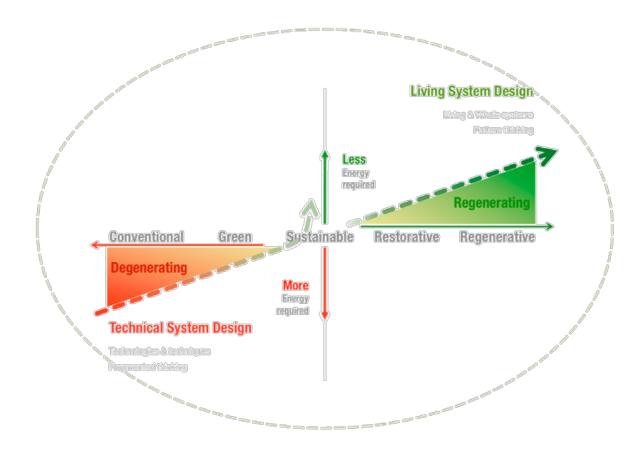



#### Can a Product System Be Regenerative?


- Living systems can be Regenerative.
- By incorporating a living system a product system can be Regenerative (but usually isn't)



#### Product System




#### Product System – Zero Waste & Regeneration



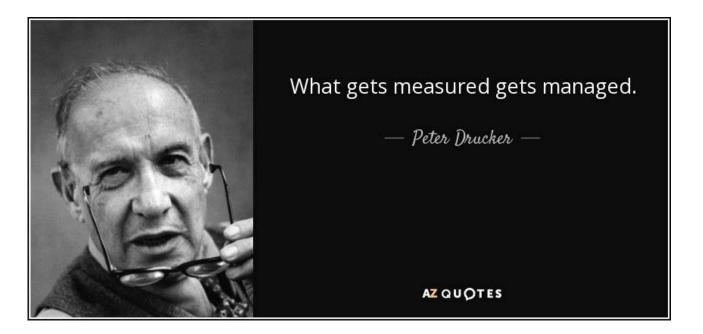
# Attributes of a Regenerative Ecosystem

- Abiotic resource depletion
- Biodiversity
- Carbon sequestration
- Hydrogeology
- Land Use
- Connectivity





McKay S. K., I. Linkov, J. C. Fischenich, S. J. Miller, and J. Valverde 2012. *Ecosystem restoration objectives and metrics*. EBA Technical Notes Collection. ERDC TN-EMRRP-EBA-12-16. Vicksburg, MS: U.S. Army Engineer Research and Development Center. *http://cw-environment.usace.army.mil/eba/* 


# Metrics for Attributes of a Regenerative Ecosystem

| ELEMENT                    | METRIC                                                                                       |
|----------------------------|----------------------------------------------------------------------------------------------|
| Abiotic Resource Depletion | MJ (fossil fuel eq.) [1]                                                                     |
| Biodiversity               | Species per hectare (micro and macro<br>flora and fauna) relative to undisturbed<br>area [2] |
| Carbon Sequestration       | Kg CO <sub>2</sub> eq. [3]                                                                   |
| Hydrogeology               | Water surface area and flow relative to undisturbed area [4]                                 |
| Land Use                   | Percent (fraction) undisturbed area [5]                                                      |
| Connectivity               | Buffer radius and incidence function [6]                                                     |
|                            |                                                                                              |

# Developing a Relative Metric

**Objectives:** 

- Consider each attribute for a regenerative system
- Emphasize criteria that are not regenerative so they receive greater attention





#### Developing a Relative Metric

For attributes whose value increases with increasingly adverse impact, such as global warming,

measure the value for a reference system,  $V_r$ , and for the subject system,  $V_s$ . The relative attribute is then,

$$x_i = \frac{v_s}{v_r}$$

For positive  $V_s$  and  $V_r$ ,  $0 \le X_i \le 1$ 



#### Developing a Relative Metric

For each attribute whose value increases with increasingly favorable outcomes, such as biodiversity,

measure the value for the reference system,  $V_r$ , and for the subject system,  $V_s$ . The relative attribute is then,

$$x_i = \frac{v_r - v_s}{v_r}$$

For positive  $V_s$  and  $V_r$ ,  $0 \le X_i \le 1$ 



# Calculating a Regeneration Factor

Using The Harmonic Mean

Given the set of n factors, x<sub>1</sub>, x<sub>2</sub>,...x<sub>n</sub>, with weights w<sub>1</sub>, w<sub>2</sub>,...w<sub>n</sub>, respectively, the Regeneration Factor, RF<sub>w</sub>, is calculated as:

$$\mathsf{RF}_{\mathsf{w}} = 1 - \frac{w_1 + w_2 + \dots + w_n}{\frac{w_1}{x_1} + \frac{w_2}{x_2} + \dots + \frac{w_n}{x_n}}$$

- where the factors, x<sub>1</sub>, x<sub>2</sub>,...x<sub>n</sub>, are the impacts that must be corrected to restore the system:
  - x<sub>1</sub> = First impact factor, e.g., GHG emissions (kg CO2eq)
  - x<sub>2</sub> = Second impact factor, e.g., fossil feedstock depletion (kg petroleum)



 $x_n = n^{th}$  impact factor

#### Metric: The Regeneration Factor

- Defined by a Regeneration Factor (RF)
- RF = 1 + "Quality" Factor



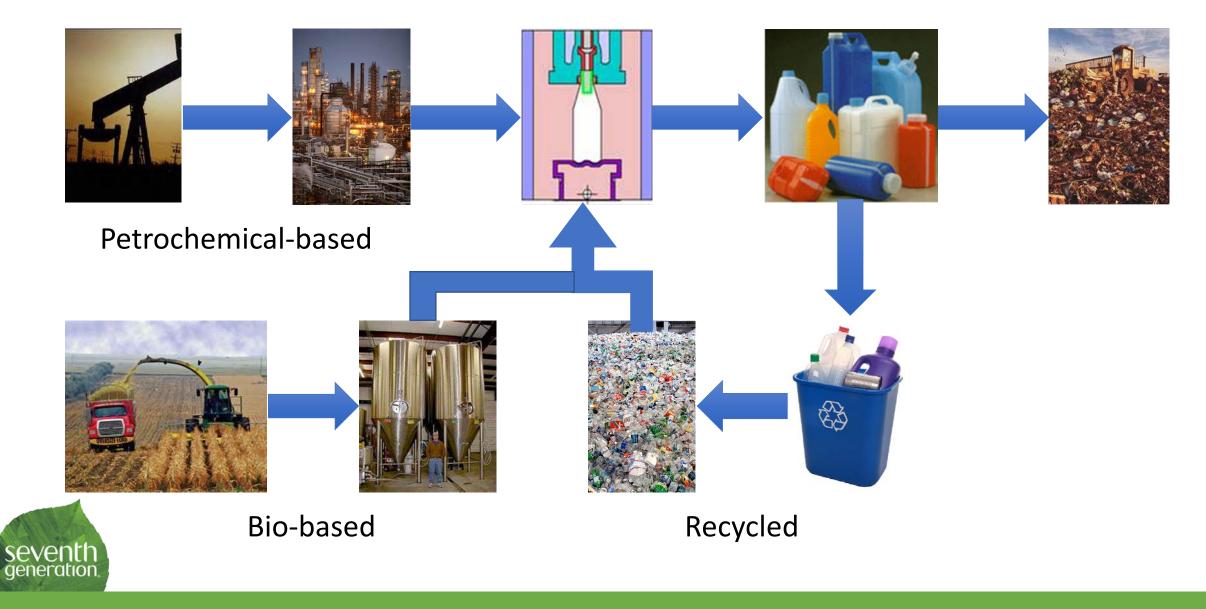
RF < 1 System is being harmed by factors inhibiting full regeneration



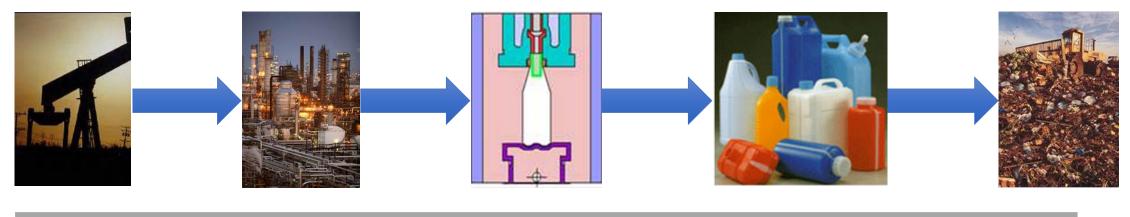


RF = 1 System that is perfectly balanced




RF > 1 System is evolving

# Examples


- Regeneration Factor of a petrochemical HDPE resin system
- Regeneration Factor of a recycled HDPE resin system
- Regeneration Factor of a biobased HDPE resin system



#### Case Study: Plastic Bottles



#### Regeneration Factor of Petrochemical HDPE Bottle System (No energy or material recovery)

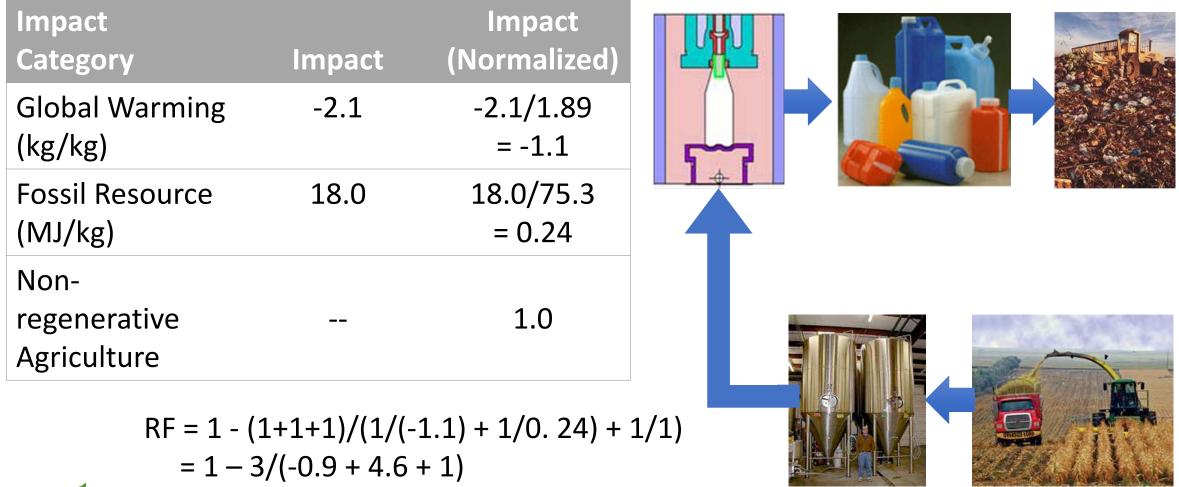


|                                   | Impact |              |     |
|-----------------------------------|--------|--------------|-----|
| Impact Category                   | Impact | (Normalized) | Ref |
| Global Warming Potential (kg/kg)  | 1.89   | 1.0          | [7] |
| Fossil Resource Depletion (MJ/kg) | 75.3   | 1.0          | [7] |



$$RF = 1 - (1+1)/(1/1 + 1/1)$$
  
= 1 - 2/2  
= 0.00

#### Regeneration Factor of Recycled HDPE Bottle System


| Impact<br>Category   | Impact                                   | Impact<br>(Normalized) | Ref |  |
|----------------------|------------------------------------------|------------------------|-----|--|
| Global Warming       | 0.56                                     | 0.56/1.89              |     |  |
| Potential<br>(kg/kg) |                                          | = 0.30                 | [7] |  |
| Fossil Resource      | 8.69                                     | 8.69/75.3              |     |  |
| Depletion<br>(MJ/kg) |                                          | = 0.12                 | [7] |  |
| = 1                  | - (1+1)/(1/0<br>— 2/(3.3 + 8<br>— 2/11.6 | 0.30 + 1/0.12)<br>.3)  |     |  |

Recycled



= 0.83

#### Regeneration Factor of Biobased HDPE Bottle System





Bio-based

# Thank you! Questions?

Martin.wolf@seventhgeneration.com



# References

- Huijbregts M.A.J., Steinmann Z.J.N., Elshout P.M.F., Stam G., Verones F., Vieira M., Zijp M., Hollander A., van Zelm R. ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. Int J Life Cycle Assess (2017) 22: 138: https://link.springer.com/article/10.1007/s11367-016-1246-y
- 2. University of Cambridge Institute for Sustainability Leadership, 2018. Healthy ecosystem metric framework: biodiversity impact
- 3. Huijbregts M.A.J., *Ibid.*
- 4. University of Cambridge Institute for Sustainability Leadership, Ibid.
- 5. University of Cambridge Institute for Sustainability Leadership, Ibid.
- McKay S. K., I. Linkov, J. C. Fischenich, S. J. Miller, and J. Valverde 2012. *Ecosystem restoration objectives and metrics*. EBA Technical Notes Collection. ERDC TN-EMRRP-EBA-12-16. Vicksburg, MS: U.S. Army Engineer Research and Development Center. <u>http://cwenvironment.usace.army.mil/eba/</u>
- 7. The Plastics Division Of The American Chemistry Council, Inc., 2010, Life Cycle Inventory Of 100% Postconsumer HDPE And PET Recycled Resin From Postconsumer Containers And Packaging
- 8. Christin Liptow and Anne-Marie Tillman, A Comparative Life Cycle Assessment Study of Polyethylene Based on Sugarcane and Crude Oil, J. Industrial Ecology, Volume (2012), 16:3, 420-435.